
Pattern Trees: An Effective Machine
Learning Approach

Zhiheng Huang, Masoud Nikravesh, Tamás D. Gedeon and Ben Azvine

Abstract Fuzzy classification is one of the most important applications of fuzzy
logic. Its goal is to find a set of fuzzy rules which describe classification prob-
lems. Most of the existing fuzzy rule induction methods (e.g., the fuzzy decision
trees induction method) focus on searching rules consisting of t-norms (i.e., AND)
only, but not t-conorms (OR) explicitly. This may lead to the omission of generating
important rules which involve t-conorms explicitly. This paper proposes a type of
tree termed pattern trees which make use of different aggregations including both
t-norms and t-conorms. Like decision trees, pattern trees are an effective machine
learning tool for classification applications. This paper discusses the difference be-
tween decision trees and pattern trees, and also shows that the subsethood based
method (SBM) and the weighted subsethood based method (WSBM) are two spe-
cific cases of pattern trees, with each having a fixed pattern tree structure.

A novel pattern tree induction method is proposed. The comparison to other
classification methods including SBM, WSBM and fuzzy decision tree induction
over datasets obtained from UCI dataset repository shows that pattern trees can
obtain higher accuracy rates in classifications. In addition, pattern trees are capa-
ble of generating classifiers with good generality, while decision trees can easily
fall into the trap of over-fitting. According to two different configurations, simple
pattern trees and pattern trees have been distinguished. The former not only produce
high prediction accuracy, but also preserve compact tree structures, while the latter
can produce even better accuracy, but as a compromise produce more complex tree
structures. Subject to the particular demands (comprehensibility or performance),
simple pattern trees and pattern trees provide an effective methodology for real
world applications.

Weighted pattern trees have been proposed in which certain weights are assigned
to different trees, to reflect the nature that different trees may have different con-
fidences. The experiments on British Telecom (BT) customer satisfaction dataset
show that weighted pattern trees can slightly outperform pattern trees, and both are
slightly better than fuzzy decision trees in terms of prediction accuracy. In addition,
the experiments show that both weighted and unweighted pattern trees are robust to
over-fitting. Finally, a limitation of pattern trees as revealed via BT dataset analysis
is discussed and the research direction is outlined.

M. Nikravesh et al. (eds.), Forging the New Frontiers: Fuzzy Pioneers II. 399
C© Springer-Verlag Berlin Heidelberg 2008

400 Z. Huang et al.

Key words: Pattern trees · fuzzy model classification · fuzzy decision trees ·
machine learning · data mining

1 Introduction

The major advantage of using fuzzy rules for classification applications is to main-
tain transparency as well as a high accuracy rate. The difficulty in obtaining an
optimal classification model is to balance the complexity of a rule base and the
classification accuracy. Generally, fuzzy rule models can produce arbitrary accuracy
if a unlimited number of rules are allowed [15]. However, this inevitably violates
the original motivation of using fuzzy rules – transparency. To address this, many
fuzzy rule induction methods have been developed. In Wang and Mendel [14] an
algorithm for generating fuzzy rules by learning from examples has been presented.
Yuan and Shaw [18] have proposed the induction of fuzzy decision trees for gener-
ating fuzzy classification rules (the extension of the classic decision tree induction
method by Quinlan [10]). Chen, Lee and Lee [1] have presented a subsethood based
method (SBM) for generating fuzzy rules. Rasmani and Shen [12] have proposed
a weighted fuzzy subsethood based rule induction method (WSBM). To avoid the
exponential growth of the size of the rule base when the number of input variables
increases, Raju, Zhou and Kisner [11] have proposed hierarchical fuzzy systems.
Recently, Kóczy, Vámos and Biró [6], and Wong, Gedeon and Kóczy [16] have
presented fuzzy signatures which model the complex structure of the data points in
a hierarchical manner.

Most of the existing fuzzy rule induction methods including fuzzy decision
trees [18] focus on searching for rules which only use t-norm operators [13] such
as the MIN and algebraic MIN. Disregarding of the t-conorms such as MAX and
algebraic MAX is due to the fact that any rule using t-conorms can be represented
by several rules which use t-norms only. This is certainly true and it is helpful to
simplify the rule induction process by considering t-norms only. However, it may
fail to generate important rules in which fuzzy terms are explicitly connected with t-
conorms. This will be clearly shown in an artificial dataset in Sect. 4.6. Research has
been conducted to resolve this problem. For example, Kóczy, Vámos and Biró [6]
have proposed fuzzy signatures to model the complex structures of data points us-
ing different aggregation operators including MIN, MAX, and average etc. Mendis,
Gedeon and Kóczy [7] have investigated different aggregations in fuzzy signatures.
Nikravesh [9] has presented evolutionary computation (EC) based multiple aggre-
gator fuzzy decision trees.

Huang and Gedeon [3] have first introduced the concept of pattern trees and
proposed a novel pattern tree induction method by means of similarity measures and
different aggregations. Like decision trees, pattern trees are an effective machine
learning approach for classification applications. The experiments carried out on
UCI datasets show that the pattern trees can obtain higher accuracy rates than the
SBM, WSBM and the fuzzy decision trees in classifications. In addition, pattern
trees perform more consistently than fuzzy decision trees. The former are capable

Pattern Trees: An Effective Machine Learning Approach 401

of generating classifiers with good generality, while the latter can easily fall into the
trap of over-fitting.

Simple pattern trees and pattern trees [4] are distinguished with two different
configurations. The former not only produce high prediction accuracy, but also pre-
serve compact tree structures, while the latter can produce even better accuracy, but
as a compromise, produce more complex tree structures. Subject to the particular
demands (comprehensibility or performance), simple pattern trees or pattern trees
provide an effective methodology for real world applications.

Weighted pattern trees [5] have been proposed in which certain weights are as-
signed to different trees. As a result, it enhances the semantic meaning of pattern
trees. The experiments on BT customer satisfaction dataset show that weighted
pattern trees can slightly outperform pattern trees. In fact, both weighted and un-
weighted pattern trees with only two or three tree levels are good enough for most
experiments carried out in this paper. This provides a very transparent way to model
real world applications.

The rest of the paper is arranged as follows: Sect. 2 provides the definitions for
similarity, aggregations and pattern trees. Section 3 proposes a novel pattern tree
induction method, which is configured differently to build simple pattern trees and
pattern trees. Section 4 shows that the SBM and WSBM are two specific cases of
pattern trees. It also outlines the difference between decision trees and pattern trees,
and the advantage of using trees. Section 5 presents the experimental results using
Saturday Morning Problem dataset and datasets from UCI machine learning repos-
itory [8]. Section 6 suggests the concept of weighted pattern trees and shows how
to use them for classification. Section 7 presents the experimental results applying
both weighted and unweighted pattern trees induction to BT customer satisfaction
dataset. Finally, Sect. 8 concludes the paper and points out some further research
work.

2 Similarity, Aggregations and Pattern Trees

2.1 Similarity

Let A and B be two fuzzy sets [19] defined on the universe of discourse U . The
commonly used fuzzy similarity measures can be defined in Table 1, where ∩ and
∪ denote a certain t-norm operator and a t-conorm respectively. Usually, the MIN
(∧) and MAX (∨) operators are used. According to the definition, 0 ≤ S(A, B) ≤
1. Without losing generality, the most commonly used similarity measure namely
Jaccard is used to construct the pattern trees in Sect. 3. In practice, it is computed as

S(A, B) =
∑m

j=1[μA(x j) ∧ μB(x j)]∑m
j=1[μA(x j) ∨ μB(x j)]

, (1)

402 Z. Huang et al.

Table 1 Similarity measures

Name Definition

Simple matching A ∩ B

Jaccard A∩B
A∪B

Dice 2 A∩B
A+B

where x j , j = 1, . . . ,m, are the crisp values discretized in the variable domain, and
μA(x j) and μB(x j) are the fuzzy membership values of x j for A and B .

An alternative similarity definition is proposed in this paper for pattern tree con-
struction. Consider that the root mean square error (RMSE) of fuzzy sets A and B
can be computed as

RM SE(A, B) =
√∑m

j=1(μA(x j)− μB(x j))2

m
, (2)

the RMSE based fuzzy set similarity can thus be defined as

S(A, B) = 1 − RM SE(A, B). (3)

The large value S(A, B) takes, the more similar A and B are. Of course, this alter-
native definition retains 0 ≤ S(A, B) ≤ 1 given μA(x j), μB(x j) ∈ [0, 1].

2.2 Fuzzy Aggregations

Fuzzy aggregations are logic operators applied to fuzzy membership values or
fuzzy sets. They have three sub-categories, namely t-norm, t-conorm, and averag-
ing operators such as weighted averaging (WA) and ordered weighted averaging
(OWA) [17].

Triangular norms were introduced by Schweizer and Sklar [13] to model dis-
tances in probabilistic metric spaces. In fuzzy sets theory, triangular norms (t-norm)
and triangular conorms (t-conorm) are extensively used to model logical operators
and and or. The basic t-norm and t-conorm pairs which operate on two fuzzy mem-
bership values a and b, a, b ∈ [0, 1] are shown in Table 2.

Table 2 Basic t-norms and t-conorms pairs

Name t-norm t-conorm

MIN/MAX min{a, b} = a ∧ b max{a, b} = a ∨ b

Algebraic AND/OR ab a + b − ab

Šukasiewicz max{a + b − 1, 0} min{a + b, 1}
EINSTEIN ab

2−(a+b−ab)
a+b
1+ab

Pattern Trees: An Effective Machine Learning Approach 403

Although the aggregations shown above only apply to a pair of fuzzy values, they
can apply to multiple fuzzy values as they retain associativity.

Definition 1. A WA operator of dimension n is a mapping E : R
n → R, that has

an associated n-elements vector w = (w1, w2, . . . , wn)
T , wi ∈ [0, 1], 1 ≤ i ≤ n,

and
∑n

i=1 wi = 1 so that

E(a1, . . . , an) =
n∑

j=1

w j a j . (4)

Definition 2. An OWA operator [17] of dimension n is a mapping F : R
n → R,

that has an associated n-elements vector w = (w1, w2, . . . , wn)
T , wi ∈ [0, 1],

1 ≤ i ≤ n, and
∑n

i=1 wi = 1 so that

F(a1, . . . , an) =
n∑

j=1

w j b j , (5)

where b j is the j th largest element of the collection {a1, . . . , an}.
A fundamental difference of OWA from WA aggregation is that the former does

not have a particular weight wi associated for an element, rather a weight is associ-
ated with a particular ordered position of the element.

Example 1. Assume w = (0.2, 0.3, 0.1, 0.4)T , then the WA operator on the vector
of (0.6, 1, 0.3, 0.5) is

E(0.6, 1, 0.3, 0.5) = 0.2 × 0.6 + 0.3 × 1 + 0.1 × 0.3

+ 0.4 × 0.5 = 0.65,

and the OWA operator on the vector is

F(0.6, 1, 0.3, 0.5) = 0.2 × 1 + 0.3 × 0.6 + 0.1 × 0.5

+ 0.4 × 0.3 = 0.55.

It is worth noting two special OWA operators are equal to MAX and MIN:

• If w∗ = (1, 0, . . . , 0), then

F(a1, . . . , an) = max{a1, . . . , an}. (6)

• If w∗ = (0, 0, . . . , 1), then

F(a1, . . . , an) = min{a1, . . . , an}. (7)

The main factor in determining which aggregation should be used is the relationship
between the criteria involved. Compensation has the property that a higher degree of

404 Z. Huang et al.

satisfaction of one of the criteria can compensate for a lower degree of satisfaction of
another criterion.w∗ means full compensation (or) and w∗ means no compensation
(and). Normally, an OWA operator lies in between these two extremes. An OWA
operator with much of nonzero weights near the top will be more or than and.

2.3 Pattern Trees

A pattern tree is a tree which propagates fuzzy terms using different fuzzy aggre-
gations. Each pattern tree represents a structure for an output class in the sense that
how the fuzzy terms aggregate to predict such a class. The output class is located at
the top as the root of this tree. The fuzzy terms of input variables are on different
levels (except for the top) of the tree. They use fuzzy aggregations (as presented in
Sect. 2.2) to aggregate from the bottom to the top (root).

Assume two fuzzy variables A and B each have two fuzzy linguistic terms Ai and
Bi , i = {1, 2}, and the task is to classify the data samples to either class X or Y . The
primitive pattern trees for class X are shown in Fig. 1. Each primitive tree consists of
only one leaf node (fuzzy set) and it uses such a leaf node to predict the output class
(X). Typically, primitive pattern trees do not lead to high prediction accuracy, and
multi-level pattern trees are required to maintain satisfactory performance. In fact,
multi-level trees are built via the aggregation of primitive trees. For example, the two
level pattern tree for class X as shown in Fig. 2 is built using the primitive trees in
Fig. 1. Let candidate trees be trees which begin as primitive trees and aggregate with
other trees (termed low level trees) to generate more optimal pattern trees in terms
of the similarity measure to the fuzzy values of output. A candidate tree B1 ⇒ X
aggregates with a low level tree A2 ⇒ X using the and operator to lead to a new
candidate tree B1 ∧ A2 ⇒ X . This new candidate tree then aggregates with another
low level tree A1 ⇒ X using the or operator to generate (B1 ∧ A2) ∨ A1 ⇒ X (as
shown in Fig. 2). The low level trees are so called due to the fact that they always
have less levels, and thus are shallower than the candidate trees. In this example,
the low level trees are primitive trees only. However, it is not always the case as low
level trees may be multi-level pattern trees as well (so long as they are shallower
than the candidate trees).

For a classification application which involves several output classes, the worked
model should have as many pattern trees as the number of output classes, with each
pattern tree representing one class. When a new data sample is tested over a pattern
tree, it traverses from the bottom to the top and finishes with a truth value, indicating
the degree to which this data sample belongs to the output class of this pattern tree.
The output class with the maximal truth value is chosen as the prediction class. For

Fig. 1 Primitive pattern trees

X

A

A1

X

A

A2

X

B

B1

X

B

B2

Pattern Trees: An Effective Machine Learning Approach 405

Fig. 2 Two example pattern
trees

and

X Y

A

A1

B1 A2

B A

B2 A2

B A

or and

example, consider that a fuzzy data A1 = 0.8, A2 = 0.2, B1 = 0, and B2 = 1 is
given for classification. As the truth values of this data over pattern trees for class X
and Y are 0.8 and 0.2 respectively, X is chosen as the output class.

Conventional fuzzy rules can be extracted from pattern trees. For example, the
following rules can be obtained from the pattern trees in Fig. 2.

Rule1 : I F A = A1 T H E N class = X (8)

Rule2 : I F A = A2 AN D B = B1 T H E N class = X (9)

Rule3 : I F A = A2 AN D B = B2 T H E N class = Y (10)

In addition to the conventionally used fuzzy aggregations MIN/MAX, pattern trees
can use any aggregations as described in Sect. 2.2.

3 Proposed Pattern Tree Induction Method

Without losing generality, assume a dataset has n input variables Ai , i = 1, 2, . . . , n
and one output variable B . For simplicity, further assume that both the input and out-
put variables have m fuzzy linguistic terms denoted as Aij and B j , i = 1, 2, . . . , n,
and j = 1, 2, . . . ,m. That is, each data in the dataset is represented by a fuzzy
membership value vector of dimension (n + 1)× m. The task is to build m pattern
trees for the m output classes (fuzzy terms). This section proposes a pattern tree
induction method in pseudo code to build a pattern tree for class B1. The pattern
trees for other classes can be built following the same procedure.

Class TreeNode shows the structure of TreeNode, which represents leaf nodes
(such as the dashed box) and internal nodes (the dotted box) in Fig. 2. is Leaf in-
dicates if a node is a leaf node or an internal node. aggreVals stores the aggregated
values on this node. Note that it stores the fuzzy values of the fuzzy set if the node
is a leaf node. similarity is the similarity measure between aggreVals and the output
class (B1 in this case), and parent points to its parent node.

Class 1 TreeNode{

1: boolean isLea f
2: double[] aggreV als
3: double similarit y
4: TreeNode parent
5: }

406 Z. Huang et al.

Each node is further classified into either a leaf node or an internal node ac-
cording to the status of ifLeaf. Leaf nodes and internal nodes are represented by
two subclasses of TreeNode, namely the LeafNode and the InternalNode, as shown
in classes 2 and 3 respectively. For leaf nodes, usedAttribute and usedTerm store
the indices of the used fuzzy set. For instance, the use of used Attribute = 1 and
usedT erm = 2 stands for the use of fuzzy term A12. For internal nodes, aggreOpe
indicates which aggregation operator is used, lambda is the value associated with
aggreOpe if aggreOpe = WA or OWA. children points to this node’s child nodes.

Class 2 LeafNode extends TreeNode{

1: int used Attribute
2: int usedT erm
3: }

Class 3 InternalNode extends TreeNode{

1: int aggreOpe
2: double lambda
3: TreeNode[] children
4: }

Algorithm 4 is the main algorithm which constructs a pattern tree for a class.
In particular, it finds and returns the root of the best pattern tree in terms of the
similarity measure between the tree and the output class B1. This algorithm takes
two extra input arguments apart from the training dataset, namely the numCandi-
dateTrees and numLowLevelTrees, indicating how many candidate trees and low
level trees are used for generating optimal pattern trees. In particular, a vector con-
sisting of nm primitive pattern trees is built by method buildPrimitiveTrees(). These
primitive pattern trees are sorted in descending order according to the similarity
measure to the fuzzy values of output class B1. A copy of such vector nodes is made
and is trimmed to size numCandidateTrees. In other words, the numCandidateTrees
primitive trees which have the highest similarities are chosen to form a repository of
candidate trees. build PatternT ree() is then invoked to find the most optimal tree
and the root node of this tree is returned.

Algorithm 5 shows how to build a pattern tree. It takes five input arguments:
a vector of candidate tree, a vector of primitive trees, a vector of low level trees,
the number of low level trees, and the level of the constructed tree so far. Candidate

Algorithm 4 main()

Input: A fuzzified dataset ds, int numCandidateT rees, and int numLowLevelT rees
Output: The root of the constructed pattern tree for class B1
1: Vector primitiveT rees =buildPrimitiveTrees(ds);
2: primitiveT rees.sort()
3: Vector nodes = primitiveT rees.clone()
4: nodes.setSize(numCandidateT rees)
5: TreeNode root = buildPatternTree(nodes, primitiveT rees, null, numLowLevelT rees, 0)
6: return root

Pattern Trees: An Effective Machine Learning Approach 407

Algorithm 5 buildPatternTree()

Input: Vector nodes, Vector primitiveT rees, Vector lowLevelT rees,
int numLowLevelT rees, and int level
Output: the root of the constructed pattern tree
1: double max Sim = nodes[0]. similarity
2: Vector candidateT rees = new Vector()
3: Vector thisLowLevelT rees = lowLevelT rees.clone()
4: for i = 0 to numCandiateT rees do
5: Vector aggregated Primitives = aggregate(nodes[i], primitiveT rees)
6: Vector aggregatedLowLevels = aggregate(nodes[i], thisLowLevelT rees)
7: lowLevelT rees.addAll(aggregated Primitives)
8: lowLevelT rees.addAll(aggregatedLowLevels)
9: candidateT rees.addAll(aggregated Primitives)

10: candidateT rees.addAll(aggregatedLowLevels)
11: end for
12: lowLevelT rees.sort()
13: lowLevelT rees.removeDuplicates()
14: lowLevelT rees.setSize(numLowLevelT rees)
15: candidateT rees.sort()
16: candidateT rees.removeDuplicates()
17: candidateT rees.setSize(numCandidateT rees)
18: double newMax Sim = candiateT rees[0].similarity
19: if newMax Sim > max Sim then
20: return buildPatternTree(candidateT rees, primitiveT rees,

lowLevelT rees, numLowLevelT rees, level + 1)
21: else
22: return nodes[0]
23: end if

trees are initially numCandidateTrees primitive trees which have the highest sim-
ilarities (see Algorithm4). They are used to aggregate with the low level trees in a
parallel manner. The vector of primitive trees remains the same in building the op-
timal pattern tree. The number of low level trees specifies how many low level trees
are maintained to aggregate with the candidate trees, such that their aggregation may
lead to higher similarities. The level of the tree indicates how many levels of the tree
have been reached so far. The higher the level, the more complex the pattern tree.
build PatternTree() invokes itself when building the pattern tree. Each invocation
results in the number of the level being increased by 1.

As candidate trees nodes are sorted in a descending order with respect to sim-
ilarities, maxSim is the highest similarity among all the candidate trees. The can-
didate trees candidateTrees for the next level is initiated to be an empty vector.
thisLowLevelTrees is cloned from lowLevelTrees to perform the aggregations with
candidate trees in this invocation time. Within the for loop at lines 4 – 11, all cur-
rent candidate pattern trees are aggregated with primitiveTrees and lowLevelTrees
resulting in two aggregated vectors of trees (aggregatedPrimitives and aggregat-
edLowLevels) respectively. All these trees are added into vectors lowLevelTrees
and candidateTrees. After the loop, both the lowLevelTrees and candidateTrees are
sorted and the duplicate pattern trees are removed. They are then trimmed to the size
of numLowLevelTrees and numCandidateTrees respectively.

408 Z. Huang et al.

Algorithm 6 aggregate()

Input: TreeNode candidateT ree and Vector trees
Output Aggregated pattern trees
1: Vector optimalT rees = new Vector()
2: for i = 0 to trees.size() do
3: if (!isSubSet(trees[i], candidateT ree)) then
4: TreeNode optimalT ree = aggregateOptimal(candidateT ree, trees[i])
5: optimalT rees.add(optimalT ree)
6: end if
7: end for
8: return optimalT rees

Now newMax Sim is the highest similarity among all the current candidate trees.
If it is greater than the previous one max Sim, the method buildTree() is kept on
invoking to next level with updated candidate trees (candidateTrees) and low level
trees (lowLevelTrees). Otherwise, the tree building process stops and the root of
the pattern tree which has the highest similarity is returned.

The method aggregate() is given in algorithm 3. It takes a pattern tree candidate
and a vector of pattern trees trees as inputs and outputs a vector of aggregated
pattern trees. In particular, for each pattern tree trees[i], i = 0, . . . , trees.si ze(), in
trees, if trees[i] is not a subset of candidateTree, then it is used to aggregate with
candidate by invoking aggregateOptimal()method. The condition of non-subset
prevents repeated parts existing in the same pattern tree. Note that trees[i] can be
either a primitive tree or a multiple level tree. The aggregated results are added
into vector optimalTrees and the vector is returned. Note that the optimalTrees
remains the same size as trees.

The method aggregateOptimal() is given in algorithm 3. It takes two pattern trees
candidate and tree as inputs and outputs an optimal aggregated pattern tree. In par-
ticular, among all possible aggregation operators, this method chooses the optimal
one to aggregate candidate with tree. The optimal aggregated tree is constructed
and returned.

The method applyAggregation() is given in algorithm 3. It shows how to calculate
the aggregated values when the aggregation operator and two vectors of fuzzy term
values are given. This method additionally requires the use of the class fuzzy values
if the aggregation operator is OWA or WA.

Method calLambda() calculates a singleton value λ at lines 10 and 15 so that
the vector of aggregatedVals[i] at line 12 and 17 has the closest distance from
classV als in the sense of the mean square error.

Figure 3 summarizes the process of building a pattern tree. Each node Ti ,
i = 0, 1, . . ., represents a pattern tree, with the horizontal axis indicating the trees’s
level, and the vertical axis indicating its similarity to the output. The level and
similarity represent the tree’s complexity and performance respectively. The goal
is to find a pattern tree which has a high similarity with a low level. Assume initially
three primitive trees T0, T1 and T2 are available and they are denoted as level 0 trees.
Let numCandidateTrees = 2 and numLowLevelT rees = 3, the nodes within
the ellipses and rectangles represent candidate and low level trees respectively. In
particular, T0 and T1 are candidate trees, and T0, T1 and T2 are low level trees at

Pattern Trees: An Effective Machine Learning Approach 409

Fig. 3 Summary of building
a pattern tree

si
m

il
ar

it
y

0

T1

T2

T5

T3

T4

T6

T7

level0 1 2

T

level 0. Each candidate tree aggregates with each low level tree to generate a level 1
tree: T0 aggregates with T1 to T5, with T2 to T3; T1 aggregates with T0 to T5, with T2
to T4. As T3 and T4 are level 1 trees and they have the highest similarities, they are
chosen as candidate trees at level 1. The low level trees are updated to T3, T0 and T4
which have the highest similarities.

The process is carried out until the highest similarity at one level decreases
compared to that in the previous level (e.g., T6’s similarity is less than T3), or no
candidate tree is available for further process. As the size of used fuzzy terms in-
creases exponentially with the growth of the level, a threshold tree level can be set
in practice to limit the over-growth of the pattern tree. In particular, the pattern tree
induction stops when the tree reaches the threshold tree level, or the highest similar-
ity decreases from one level to the next, whichever happens first. Note that the value
of threshold tree level depends on the number of input variables. If the variables are
all relevant for the classification, the more input variables are, the higher value the
threshold should be.

Generally, the higher values of numCandidateTrees and numLowLevelT rees
are, the more thoroughly the search goes and the less likely the search is to be
trapped in a local optimum. High values may lead to an exhaustive search in
building a globally optimal pattern tree, which is unfortunately not practical for

Algorithm 7 aggregateOptimal()

Input: TreeNode candidate and TreeNode tree
Output: An optimal aggregated pattern tree
1: double max Sim = -1
2: double[] candidateV als = candidate.aggregatedVals
3: double[] treeV als = tree.aggregatedVals
4: for i = 1 to num AggreOpes do
5: tempAggreV als = applyAggregation(i ,

candidateV als, treeV als, B1.fuzzyVals)
6: tempSim = similarity(tempAggreV als, B1.fuzzyVals)
7: ifmax Sim < tempSim then
8: max Sim = tempSim
9: aggregationOpe = i
10: end if
11: end for
12: TreeNode parent = new InternalNode(aggregationOpe, candidate, tree)
13: return parent

410 Z. Huang et al.

Algorithm 8 applyAggregation()

Input: Int aggOpe, double[] aggreV als1, double[] aggreV als2, and double[] classV als
(required if the operator is WA or OWA)

Output: Aggregated values aggregatedV als
1: if aggOpe!= OWA or aggOpe!= OWA then
2: for i = 1 to sizeOf(aggreV als1) do
3: aggregatedV als[i] =

aggOpe(aggreV als1[i], aggreV als2[i])
4: end for
5: else ifaggOpe == OWA then
6: for i = 1 to sizeOf(aggreV als1) do
7: maxV als[i] = max{aggreV als1[i], aggreV als2[i]}
8: minV als[i] = min{aggreV als1[i], aggreV als2[i]}
9: end for

10: λ = calLambda(maxV als,minV als, classV als)
11: for i = 1 to sizeOf(aggreV als1) do
12: aggregatedV als[i] = λ ∗ maxV als[i]+

(1 − λ) ∗ minV als[i]
13: end for
14: elss ifaggOpe == WA then
15: λ = calLambda(aggreV als1, aggreV als2, classV als)
16: fori = 1 to sizeOf(aggreV als1) do
17: aggregatedV als[i] = λ ∗ aggreV als1[i]+

(1 − λ) ∗ aggreV als2[i]
18: end for
19: end if

NP hard problems. In this paper, the setting of numCandidateTrees = 2 and
numLowLevelT rees = 3 is used through out all examples and experiments to
trade off the search effort and the capacity of escaping from local optima.

The configuration of numCandidateTrees = 1 and numLowlevelT rees = 0
forms specific pattern trees. In this configuration, only primitive trees (no low
level trees) are considered to aggregate the candidate tree. The generated pattern
trees have one and only one fuzzy set at each level except for level 0 (bottom
level), forming snake-like trees such as in Fig. 4. They are denoted as simple
pattern trees for later reference, in distinction with normal pattern trees. In this
paper, two small examples are given to illustrate the pattern tree induction. The
first one uses the simple pattern tree configuration with numCandidateTrees =
1 and numLowlevelT rees = 0, while the second uses the configuration of
numCandidateTrees = 2 and numLowlevelT rees = 3.

Example 2. Assume an artificial dataset has two input variables A and B , with each
having two fuzzy linguistic terms Ai and Bi , i = 1, 2. Also assume this dataset
has two output classes X and Y . All the fuzzy membership values are shown in
Table 3. To simplify the representation, only the construction of pattern tree for
class X is presented and the MIN/MAX, OWA, and WA aggregations are considered
here. The process of building the pattern tree is shown in Fig. 4. The pattern trees
constructed in the process are denoted as Ti , i = 0, . . . , 9. The are marked in the
order of the time that the trees are constructed. That is, the trees with lower indices

Pattern Trees: An Effective Machine Learning Approach 411

WA_1.00

X

A1

A

X

B2

B

X

B1

B

X

A2

A

T 1 T 2 T 3T 0

X

A1 B1

T 5X

A1 2B

T 4

A B

WA_1.00

0.6585

X

A1 A2

T 6

A

MAX

A
0.7021

T 8 X

A

A2

T 7 X

B

B2

A B

B1A1 MAX

WA_0.91

T 9

B

B2

X

A

A2

S=0.6585 0.5217 0.4545 0.4348

A B

MAX

aggregations via primitive trees

0.7778

A B

B1A1 MAX

WA_1.00

0.7778

aggregations via primitive trees

level 0

level 1

level 2

level 3

0.7792

0.7792

A B

B1A1 MAX

WA_0.91

Fig. 4 Pattern tree construction for example 2

are constructed earlier than the ones with higher indices. The candidate trees at
each level are surrounded by rectangular boxes with rounded corners. To distinguish
them at different levels, solid, dashed, and dotted lines are used for level 0, 1, and 2
respectively. The number shown below each tree node is the similarity measure to

412 Z. Huang et al.

Table 3 An artificial dataset
A B Class

A1 A2 B1 B2 X Y

0.8 0.2 0.0 1.0 0.9 0.1
0.9 0.1 0.1 0.9 0.8 0.2
0.5 0.5 0.9 0.1 0.7 0.3
0.2 0.8 0.8 0.2 0.9 0.1
0.4 0.6 0.4 0.6 0.3 0.7
0.3 0.7 0.5 0.5 0.1 0.9

the fuzzy values of output class X . In particular, the process of building a pattern
tree includes the following steps:

1. Build four primitive pattern trees T0, T1, T2 and T3, with the similarities calcu-
lated from (1) being 0.6585, 0.5217, 0.4545, and 0.4348 respectively.

2. Assign T0 which has the highest similarity measure as the candidate tree at
level 0.

3. Now consider the tree aggregation from level 0 to level 1. Try the rest of the
primitive pattern trees T1, T2 and T3 in turn to aggregate with T0 using differ-
ent aggregation operators MIN, MAX, OWA, and WA. The resulted similarity
measures are shown in Table 4

4. Choose the aggregated tree T5 as the new candidate tree at level 1. This is be-
cause the aggregation of T0 and T2 with MAX operator results in the highest
similarity of 0.7778 which is greater than the similarity produced by T0 alone.
Also, the aggregated values of T5, (A1 M AX B1) = {0.8, 0.9, 0.9, 0.8, 0.4, 0.5},
are stored in the leaf node for further aggregation.

5. Now consider the tree aggregation from level 1 to level 2. Try the rest of the
primitive trees T1 and T3 in turn to aggregate with T5 using different aggregation
operators. The resulting similarity measures are shown in Table 5.

6. Choose the aggregated tree T7 as the new candidate tree at level 2, as this aggre-
gation results in the highest similarity 0.7792 which is greater than the similarity
produced by T5. Note that a λ = 0.91 is stored in the node along with the WA
operator. Also, the aggregated values of T7 = {0.8185, 0.9000, 0.8259, 0.7444,
0.41856, 0.5} are stored in this node for further aggregation.

7. Now consider the tree aggregation from level 2 to level 3. Try the rest of the prim-
itive tree T3 to aggregate with T7 using different aggregation operators. None of
the resulting similarity measures are greater than the current 0.7792. The pattern
tree building process stops and the pattern tree T7 is returned.

Table 4 Similarity measures of aggregations in step 3

T1 T2 T3

MIN 0.5610 0.3000 0.3500
MAX 0.6087 0.7778 0.7021
OWA 0.6065 0.7740 0.6815
WA 0.6585 0.6543 0.6356

Pattern Trees: An Effective Machine Learning Approach 413

Table 5 Similarity measures of aggregations in step 5

T1 T3

MIN 0.5349 0.4762
MAX 0.7500 0.7143
OWA 0.7609 0.7109
WA 0.7792 0.7778

It is worth noting that each primitive tree is being checked to see if it is a subset
tree of the candidate tree before the aggregation happens. For example, at level 1 for
candidate tree T5, only T1 and T3 among all primitive trees are allowed to aggregate.
This is because other primitive trees have already appeared in T5.

Example 3. Following the conditions given in the previous example, the construc-
tion of pattern tree using the configuration of numCandidateTrees = 2 and
numLowlevelT rees = 3 is shown in Fig. 5. The candidate trees at each level
are surrounded by rectangular boxes with rounded corners, while the low level trees
are surrounded by rectangular boxes. Again, solid, dashed, and dotted lines are used
for level 0, 1, and 2 respectively. Note that no low level trees are available at level
0. The building process is described by the following steps:

1. Build four primitive pattern trees T0, T1, T2, and T3, with the similarities calcu-
lated from (1) being 0.6585, 0.5217, 0.4545, and 0.4348 respectively.

2. At level 0, assign T0 and T1 which have the highest similarities as the candidate
trees. There is no low level tree at this level.

3. Now consider the tree aggregation from level 0 to level 1. For the first candidate
tree T0, try the rest of the primitive pattern trees T1, T2, and T3 in turn to aggre-

level 3

X

B

B2

A B

B1A1 MAX

WA_0.91

X

A

A2

X

BB

B1 B2 B1

BA

A1
MAX

MIN

OWA
0.87

X

BB

B1 B2 A2

A B

B1A1 MAX

WA_1.00

AA

A1
MAX OWA

0.92

WA_0.97

0.7792 0.7778 0.7962 0.7788

aggregations via primitive trees aggregations via low level trees

X

A

A1

B2 B1OWA
0.87

0.7772

B B

WA_0.86

X

BB

B1 B2 A2B2 OWA
0.87

OWA
0.92

AB

WA_1.0

0.7814

X

AB

B1 A1 B1OWA
0.87

B2

0.7962

BB

MIN

MAX

X

A

A2

B1B2 OWA
0.87

B B

WA_1.00

0.7814

X X X

B2 1A B2 B1 B2 A2

X X X

A1 2B A1 B1 A1 A2

X

A1

A

X

B2

B

X

B1

B

X

A2

A

AB

B1 A1 B1OWA
0.87

B2

X

WA_1.00

A

A2

0.7962

BB

MIN

MAX

AB

B1 A1 B1OWA
0.87

B2

X

B B

AB2

WA
1.00

OWA
0.87

B1

A2

X

AB

B1 A1 B1OWA
0.87

B2

BB

MIN

MAX
A

A2

B1B2 OWA
0.87

A

A2

B1B2 OWA
0.87

X

A

A1

B B

WA_1.00

WA_0.86

aggregations via primitive tree aggregations via low level tree

0.7962

BB

MIN

MAX

MIN

aggregations via low level tree

MIN

0.7962

B B

WA_1.00

aggregations via primitive tree

0.7772

T 1 T 2 T 3

T 17T 16T 15T 14

T 20 T 21 T 18 T 19

T 10 T 11 T 12 T 13

T 4 T 5 T 6 T 7 T 8 T 9

T 0

aggregations via primitive trees aggregations via low level trees

B A B B B A

aggregations via primitive trees

0.6585 0.7814 0.7128

WA_0 OWA_0.92

A B A B A

WA_1.00 MAX MAX

A

aggregations via primitive trees

0.6585 0.7778 0.7021

S=0.6585 0.5217 0.4545 0.4348

OWA_0.87

level 2

level 0

level 1

Fig. 5 Pattern tree construction for example 3

414 Z. Huang et al.

gate with, the best aggregated pattern trees are T4, T5 and T6, with similarities
being 0.6585, 0.7778, and 0.7021. As there is no low level trees available, no
aggregations between the candidate tree and low level trees happen.

4. For the second candidate tree T1, try the rest of the primitive pattern trees T0, T2
and T3 in turn to aggregate with, the best aggregated pattern trees are T7, T8 and
T9, with similarities being 0.6585, 0.7814, and 0.7128. again, no aggregations
between the candidate tree and low level trees happen.

5. At level 1, assign T8 and T5 which are level 1 trees and have the highest simi-
larities as the candidate trees. Also, assign T8, T5 and T9 which have the highest
similarities as the low level trees.

6. Now consider the tree aggregation from level 1 to level 2. For the first candidate
tree T8, try the primitive pattern trees T0 and T3 which do not appear in the
candidate tree. The resulted aggregated trees are T10 and T11, with similarities
being 0.7772 and 0.7814 respectively. Then the low level trees T5 and T9 are
used to aggregate with T8, resulting in T12 and T13 with similarities being 0.7962
and 0.7814.

7. Similarly for the second candidate tree T5 at level 1, four aggregated trees T14,
T15, T16, and T17 are generated, with similarities being 0.7792, 0.7778, 0.7962,
and 0.7788 respectively.

8. This process is carried out in the same manner from level 2 to level 3. T18, T19,
T20, and T21 are constructed. As none of them has a higher similarity than T12,
the building process stops and T12 is returned.

It is worth noting that the duplication removal is performed in selecting the can-
didate trees and low level trees. For example, at level 2, although T16 has a high
similarity measure, it is not selected as a candidate tree or low level tree as tree T12
is identical to it, and also T12 is constructed earlier. It can be shown from Fig. 4 and
Fig. 5 that, the search space for example 2 is a sub-space of that for example 3. Gen-
erally, the higher values of numCandidateTrees and numLowlevelT rees, the
more of the search space the building process reaches. On the other hand, the con-
figuration of numCandidateTrees = 1 and numLowlevelT rees = 0 attempts to
find an optimal simple tree with little computation effort.

4 Comparison to SBM, WSBM and Decision Trees

As the fuzzy subsethood based method (SBM) [1] and its extension, the weighted
subsethood based method (WSBM) [12], are two specific cases of patterns trees
(see below), they are chosen along with the well-known fuzzy decision tree induc-
tion [18] to compare with the proposed pattern tree induction method. For a clear
representation of the comparison, the small artificial dataset as shown in Table 3 is
used to generate fuzzy rules for SBM, WSBM, decision trees induction, and pattern
trees induction.

Pattern Trees: An Effective Machine Learning Approach 415

4.1 SBM

The subsethood based method consists of three main steps:

1. Classifying training data into subgroups according to class values, with each
group having the data which prefer voting for one class.

2. Calculating fuzzy subsethood values of a certain output class to each input fuzzy
term. A fuzzy subsethood value of X with regard to A1, Sub(X, A1) = X∩A1

X ,
represents the degree to which X is a subset of A1 (see [1, 12]), where ∩ is a
t-norm operator (MIN is used).

3. Creating rules based on fuzzy subsethood values. In particular, for each input
variable, the fuzzy term that has the highest subsethood value (must be greater
than or equal to a pre-specified threshold value α ∈ [0, 1], 0.9 used in [1]) will
be chosen as an antecedent for the resulting fuzzy rules.

Regardless of the subgrouping process and the use of subsethood rather than
similarity measure, the SBM always generates a pattern tree which has only one
level. In this tree, the fuzzy terms which have the greatest subsethood values (must
be greater than or equal to α) per input variable are aggregated via a t-norm operator
(MIN) to predict a class concerned.

For the artificial dataset, two groups are created. The first has the first four data
points, which prefer voting for class X rather than Y , and the second has the remain-
ing two data points. Assume class X is considered, the subsethood values of X to
Ai , Bi , i = 1, 2, are calculated as 0.6970, 0.4848, 0.4848, and 0.6061 respectively.
If α is set to 0.9 as in [1], no fuzzy rules (pattern trees) can be generated. However,
for comparison purposes, α is set to 0.6 to generate the pattern tree for class X as
shown in Fig. 6. This figure also shows the pattern tree for Y which is constructed
in the same manner.

4.2 WSBM

WSBM is a weighted version of SBM. It uses a certain weighting strategy to rep-
resent fuzzy terms rather than choosing the one which has the greatest subsethood
value per variable. In particular, the weight for fuzzy term Ai is defined as

w(X, Ai) = Sub(X, Ai)

max j=1,2Sub(X, A j)
. (11)

Fig. 6 Pattern trees generated
by SBM using the artificial
dataset

and

B A

A2B2

Y

B A

A1B2

X

and

416 Z. Huang et al.

Fig. 7 Pattern trees generated
by WSBM using the artificial
dataset

1

X

BA A B

A1 B2

Y

BA A B

2A 0.5A1 B2 0.8B1or or

and

or or

and

20.7A 0.8B

Using this equation, the weights for A1, A2, B1 and B2 in the classification of X are
calculated as 1, 0.7, 0.8, and 1 respectively. The fuzzy rules generated by WSBM
form fixed structured pattern trees as shown in Fig. 7.

Unlike the proposed pattern tree induction method which can generate different
structured patter trees, SBM and WSBM generate trees with fixed structures. In
particular, SBM trees have only one level, on which the fuzzy terms which have
the highest subsethood values per input variable aggregate via a t-norm operator.
WSBM trees have two levels. On the bottom level, all fuzzy terms (with different
weights) for each variable aggregate via a t-conorm operator, on the top level the
aggregated values further aggregate via a t-norm operator. The fixed structures of
SBM and WSBM may prevent them from obtaining high accuracy in classification
applications (see Sect. 4.6).

4.3 Fuzzy Decision Tree Induction

The decision tree induction [10] is a classic machine learning method. It has been
extended to induce fuzzy decision tree by Yuan and Shaw [18], where the fuzzy
entropy is used to guide the search of most effective branches. A fuzzy decision tree
as shown in Fig. 8 can be built using [18] over the artificial dataset. It has a root on
the top and several leaf nodes on the bottom. When a new data sample needs to be
classified by the fuzzy decision tree, it traverses from the root to the bottom. The
output class of a leaf node in the bottom, which the data sample reaches with the
highest truth value, is chosen as the prediction class.

For the same training dataset, fuzzy decision tree induction may generate dif-
ferent results with different numbers of minimal data points per leaf node, which
are used as criteria to terminate the tree building process. Considering only six data
samples are available, this can be set to 1 to 6. Among all these, the best result (as
shown in Fig. 8, when the number of leaf nodes is set to 1 or 2) has been chosen for
comparison in Sect. 4.6.

Fig. 8 A decision tree
generated by fuzzy decision
tree induction using the
artificial dataset

X

1 A2

X

B1 B2

A

B

Y

A

Pattern Trees: An Effective Machine Learning Approach 417

4.4 Relation between Fuzzy Decision Trees and Pattern Trees

A fuzzy decision tree can be converted to a set of pattern trees whose size is equal
to the number of output classes. In particular, the easiest way is to convert a fuzzy
decision tree to a set of semi-binary pattern trees. That is, there are maximally two
branches allowed for each node (except for the root) in the pattern tree. The con-
version process is outlined as follows. For each fuzzy rule (a branch from the root
to a leaf node) in a decision tree, the input fuzzy terms are connected by a t-norm
operator (usually MIN) in different levels of the pattern tree. A fuzzy rule consisting
of n fuzzy terms results in a (n − 1)-level binary pattern tree as the bottom level
contains two fuzzy terms. The fuzzy rules which have the same classification class
are connected by a t-conorm (usually MAX) at the top level (level n) to construct a
pattern tree for this output class. The number of levels of the generated semi-binary
pattern trees remains the same as the fuzzy decision tree, regardless whether the
decision tree is binary or not. Fig. 2 shows the pattern trees which are equivalent to
the decision tree as shown in Fig. 8. They both have the same rule base as listed in
(8) – (10).

The conversion from a decision tree to pattern trees is not unique. For example,
an alternative conversion from Fig. 8 is shown in Fig. 9, which can be represented
by two rules as following.

Rule1 : I F A = A1 O R B = B1 T H E N class = X, (12)

Rule2 : I F A = A2 AN D B = B2 T H E N class = Y. (13)

Note that these two fuzzy rules are functionally equal to rules (8), (9) and (10). Such
a conversion is closely related to Zadeh’s work on compactification [20]. When the
size of fuzzy terms for each variable increases, the conversion of a fuzzy decision
tree to multi-branch pattern trees are desirable and the work on that is on-going.

On the other hand, pattern trees can be converted to a decision tree. The fuzzy
decision tree shown in Fig. 8 can be converted from either Fig. 2 or Fig. 9.

It is worth noting that decision trees and pattern trees are different in terms of
four aspects: 1) the former focus on separating data samples which have different
output classes, while the latter focus on representing the structures of data samples
which have the same output classes; 2) for each internal node, the former consider
all fuzzy terms of the chosen input variable, whist the latter only consider one;
3) the former normally make use of MIN and MAX aggregations only, while the
latter can use any aggregations as described in Sect. 2.2; and 4) the tree induction
methods are completely different, with the former based on the heuristics of entropy
measure [18] while the latter on the heuristics of similarity measure.

Fig. 9 Alternative pattern
trees converted from the
decision tree in Fig. 8

and
1

A

X Y

A B

A2 B2
B1

B

orA

418 Z. Huang et al.

4.5 Advantages of Trees

Both decision trees and pattern trees can be converted to conventional fuzzy rules. In
terms of the computational complexity, both decision trees and patterns trees have
the advantage over conventional rule bases. An example is given below to show how
pattern trees can simplify the computation.

Definition 2. Let assume fuzzy variable A, B , C , D, E , and F with each having
two fuzzy linguistic terms Ai , Bi , Ci , Di , Ei and Fi , i = {1, 2}. One pattern tree
associated with the output class X is shown in Fig. 10. The directly extracted fuzzy
rule from the pattern tree can be written as

I F (((A = A1) O R (B = B2)) AN D (C = C1)) AN D

(((D = D1) AN D (E = E2)) O R (F = F2))

T H E N class = X, (14)

which is equivalent to the conventional fuzzy rules (without using the OR operator
explicitly within a rule):

I F A = A1 AN D C = C1 AN D D = D1 AN D E = E2

T H E N class = X (15)

I F A = A1 AN D C = C1 AN D F = F2

T H E N class = X (16)

I FB = B2 AN D C = C1 AN D D = D1 AN D E = E2

T H E N class = X (17)

I FB = B2 AN D C = C1 AN D F = F2

T H E N class = X (18)

If a data sample needs to be classified with the conventional fuzzy rules, the four
rules should fire in turn, leading to the evaluation of A = A1, B = B2, C = C1,
D = D1, E = E2, F = F2, the and operator, and the or operator to be 2, 2, 4, 2, 2,
2, 10 and 3 times respectively. However, for the computation upon the pattern tree
directly, they are only computed 1, 1, 1, 1, 1, 1, 3 and 2 times respectively.

From this example, it can be concluded that although the pattern trees (or deci-
sion trees) may share the same fuzzy rule base with a conventional rule model, it

Fig. 10 A example pattern
tree

and

X

A B D E

FCA1 B2

C1

D1

E2

F2

or

and

or

and

Pattern Trees: An Effective Machine Learning Approach 419

can significantly reduce the computation time in the test stage. This advantage is
especially important when quick response is required for fuzzy applications.

4.6 Pattern Trees and the Comparison Results

The aggregations of MIN/MAX, algebraic AND/OR, Šukasiewicz, EINSTEIN,
OWA, and WA are considered in building a pattern tree using the proposed method.
Two similarity measures as shown in (1) and (3) are used and the best result (using 3)
is reported. The threshold tree level for pattern tree induction is set to 3. Both sim-
ple pattern tree (with numCandidateTrees = 1 and numLowlevelT rees = 0)
and pattern tree (with numCandidateTrees = 2 and numLowlevelT rees = 3)
configurations are used, resulting in simple pattern trees and pattern trees as shown
in Fig. 11 and Fig. 12 respectively. It is worth noting that, if only MIN/MAX are
allowed in the simple pattern tree induction, the generated trees using similarity
defined in either (1) or (3) are exactly the same as the trees shown in Fig. 9, with
and being MIN and or being MAX.

Now apply this artificial dataset to the rules (or trees) generated by SBM, WSBM,
fuzzy decision trees, simple pattern trees, and pattern trees, the results including
the number of correctly predicted data samples (No.), the root mean square error
(RMSE) of the predictions for class X , Y , and their average (ARMSE) are shown in
Table 6.

It is clear that the pattern trees perform the best, in terms of both the correctly
predicted number and the mean square error, among all the methods. Simple pat-
tern trees perform slightly worse, but still better than the fuzzy decision tree. This
example shows that SBM and WSBM cannot get good results as their fixed pattern
tree structures prevent them appropriately representing the structure of the dataset.
Fuzzy decision trees can generate different tree structures. However, they lack some
candidate search spaces represented by the t-conorm aggregations of fuzzy terms
of different variables. For instance, in this example, Fig. 8 considers whether A1,
A2, A1 ∨ A2, and A2 ∧ B1 etc. are important or not for the classification, but not
A1 ∨ B1 explicitly, thus failing to find such an important rule. In contrast, the pro-
posed pattern tree induction method explicitly considers both t-norm and t-conorm
aggregations of fuzzy terms in building trees. Thus, it is more likely to find optimal
solutions.

Fig. 11 Pattern trees
generated using simple
pattern tree configuration

OWA_0.95

X

B2

A B

B1A1 B

Y

B1

BA2 B2

A B

WA_0.93

OWA_0.05

WA_0.93

420 Z. Huang et al.

OWA_0.54

B

B1OWA
0.95

X

B

WA
0.93

OWA
0.95

B1

B2Algebraic
AND

A

A1 OWA
0.87

B

B2 B1

A

A1 B

B

OWA_0.46

B

B2OWA
0.05

Y

B

WA
0.93

OWA
0.05

B2

B1Algebraic
OR

A

A2 OWA
0.13

B

B1 B2

A

A2 B

B

Fig. 12 Pattern trees generated using pattern tree configuration

Table 6 Results of SBM, WSBM, Fuzzy decision tree, and patter trees using the artificial dataset

No. RMSE(X) RMSE(Y) ARMSE

SBM 4 0.3916 0.2 0.2958
WSBM 4 0.2386 0.3435 0.2911
Fuzzy decision tree 5 0.2 0.2 0.2
Simple pattern trees 6 0.1956 0.1956 0.1956
Pattern trees 6 0.1715 0.1715 0.1715

5 Experimental Results using Saturday Morning Problem
Dataset and UCI Datasets

To demonstrate the effectiveness of the proposed pattern tree induction method,
Sect. 5.1 presents comparative studies with the fuzzy subsethood based method
(SBM) [1], the weighted subsethood based method (WSBM) [12], and the fuzzy de-
cision tree [18] using the Saturday Morning Problem dataset [18, 1, 12]. Section 5.2
presents more comparison to fuzzy decision trees over the datasets obtained from
UCI machine learning repository [8], which include Iris-Plant, Wisconsin Breast
Cancer, Glass identification, Diabetes, and Wine Recognition. Note that the results
of SBM and WSBM over the Iris-Plant dataset, which were reported in [12], are
also provided here for comparison.

5.1 Saturday Morning Problem

The Saturday Morning Problem (SMP) dataset has 16 data samples, with each
having 4 input variables, outlook, temperature, humidity and wind. Each variable
has fuzzy terms as follows: outlook = {sunny, cloudy, rain}, temperature ={hot,
mild, cool}, humidity ={humid, normal} and wind ={windy, not-windy}. The clas-
sification result is one of the plans to be taken: class ={volleyball, swimming,
weight-lifing}.

Table 7 shows the best performances of SBM, WSBM, fuzzy decision tree, sim-
ple pattern trees, and pattern trees respectively. Note that the threshold pattern tree
level is set to be 3. No. is the number of correctly predicted data points. RMSE(1),
RMSE(2) and RMSE(3) are the root mean square errors for class volleyball, swim-
ming and weight-lifting respectively and ARMSE is the average of these three.

Pattern Trees: An Effective Machine Learning Approach 421

Table 7 Performance of SBM, WSBM, Fuzzy decision trees, and patter trees using SMP dataset

No. RMSE(1) RMSE(2) RMSE(3) ARMSE

SBM 15 0.2046 0.1620 0.1323 0.1663
WSBM 15 0.2818 0.2480 0.4398 0.3232
Fuzzy decision tree 13 0.2681 0.1369 0.1953 0.2001
Simple pattern trees 14 0.3279 0.1750 0.2669 0.2566
Pattern trees 15 0.2078 0.0995 0.2256 0.1776

Among the comparison, SBM obtains the best result, in terms of both the number
of correctly predicted data points and the root mean square errors (indicating the
differences between the predicted values and the actual values). This is because
a default fuzzy rule has been introduced in SBM method to predict class weight-
lifting, as it cannot generate any “meaningful” rules for this class. This certainly
helps in the example, but may not be useful in other datasets – especially when
there are more than one class which SBM cannot generate any “meaningful” rules
for.

WSBM seems get a good result in terms of the correctly predicted number, it
however has the greatest ARMSE among all methods. This reveals that the average
difference between the predicted values and the actual values is the highest.

Fuzzy decision tree has a low average RMSE, but only correctly predicts 13
out of 16 data samples. Simple pattern tree predicts 14 correctly, but with a higher
average RMSE. Pattern trees perform very well in terms of both correctly predicted
number and ARMSE. It is worth noting that, unlike SBM method, three pattern trees
are constructed here for three classes respectively. With respect to finding a correct
pattern for each class, pattern trees perform nearly the same as SBM in finding the
first one, but much better in the second. However, the default rule which SBM uses
outperforms pattern trees for the third class.

5.2 UCI Machine Learning Datasets

The datasets of Iris-Plant, Wisconsin Breast Cancer, Glass Identification, Diabetes,
and Wine Recognition obtained from UCI machine learning repository [8], which
have been widely used as benchmarks in classification applications, are summarized
in Table 8.

For all datasets except Iris-Plant, a simple fuzzification method based on six
evenly distributed trapezoidal membership functions for each input variable is used
to transform the crisp values into fuzzy values. To be comparable to the result re-
ported in [12], Iris-Plant dataset uses three evenly distributed trapezoidal fuzzy sets
for each variable.

All datasets (ds) are divided into training datasets and test ones. Assume ev-
ery dataset is labeled for data samples, the training sets (ds-odd) contain the odd
numbered data samples and the test sets (ds-even) contain the even numbered
ones. The performances of the SBM and WSBM (only for Iris-Plant dataset),

422 Z. Huang et al.

Table 8 Summary of Iris-Plant, Wisconsin Breast Cancer, Glass Identification, Diabetes, and Wine
Recognition Datasets

Name Number of data Number of inputs Number of
classes

Iris-Plant 150 4 3
Wisconsin Breast
Cancer

699 9 2

Glass identification 214 9 6
Diabetes 768 8 2
Wine recognition 178 13 3

fuzzy decision tree (FDT), simple pattern trees (SimPT), pattern trees with level
no more than 5 (PTLevel5) and pattern trees with level no more than 9 (PTLevel9)
over different combinations of training-test sets for different datasets are shown in
Tables 9, 10, 11, 12 and 13. PTLevel5 trees maintain a good comprehensibility
as they have maximal 25 = 32 leaf nodes. However, PTLevel9 trees may be too
complex as they have maximal 29 = 512 leaf nodes, although the trees usually have
much fewer leaf nodes than this maximum. As the Iris-Plant dataset has only 4 input
variables, there is no need to set the threshold tree level to 5. Actually the maximal
level the trees reach is no more than 3.

All the results reported for fuzzy decision trees are the best results among
the use of different numbers of leaf nodes. The MIN/MAX, algebraic AND/OR,
Šukasiewicz, EINSTEIN, OWA, and WA are considered in building pattern trees.
Note that ∗ in Table 9 indicates the results are not available in [12].

PTLevel9 trees outperform the other trees over all five datasets. They obtain the
highest prediction accuracies in all experiments, except for the training-test sets
being ds and ds in Glass Identification and Diabetes datasets. On the other hand,
FDT nearly performs the worst except in Diabetes dataset, in which it outperforms
SimPT. SimPT performs roughly the same to PTLevel5 – both of them perform
better than FDT, but worse than PTLevel9 trees.

It is worth noting that pattern trees perform in a consistent way for different
combinations of training and test datasets, while fuzzy decision trees do not. This
can be seen from the Glass Identification and Diabetes datasets. Fuzzy decision trees
generate large differences in classification accuracy between the first (or the second)
combination of the training-test datasets and the third one, due to the over-fitting
problem. The reason is that decision tree induction considers only a portion of the
whole training dataset in choosing the branches at low levels of trees. The lack
of using the whole training dataset inevitably prevents the method finding better

Table 9 Prediction accuracy of SBM, WSBM, fuzzy decision trees, simple pattern trees, and pat-
tern trees using Iris-Plant dataset

Training Testing SBM WSBM FDT SimPT PTLevel3

ds-odd ds-even 80% 93.33% 97.33% 97.33% 97.33%
ds-even ds-odd 78.67% 93.33% 97.33% 98.67% 98.67%
ds ds ∗ ∗ 97.33% 97.33% 97.33%

Pattern Trees: An Effective Machine Learning Approach 423

Table 10 Prediction accuracy of fuzzy decision trees, simple pattern trees, and pattern trees using
Wisconsin Breast Cancer dataset

Training Testing FDT SimPT PTLevel5 PTLevel9

ds-odd ds-even 93.70% 94.84% 94.84% 95.41%
ds-even ds-odd 95.71% 96.57% 95.42% 96.57%
ds ds 96.85% 97.42% 97.13% 98.14%

tree structures for all the dataset. In contrast, pattern trees make use of the whole
data in building each level of the tree, which ensures the tree to keep good gener-
ality for classifications. Therefore, even complex pattern trees do not suffer from
over-fitting.

Simple pattern trees usually have compact structures, and they can be simpler
than fuzzy decision trees. For example, Fig. 13 shows the decision tree (with pre-
diction accuracy of 92.13%) generated using Wine Recognition dataset with training
set being ds-odd and test set being ds-even. The ellipses are the input variables and
the rectangles are the output classes (0, 1, or 2). Note that the empty rectangles mean
no decision class is available. Fi , i = 0, . . . , 5, are the fuzzy terms associated with
each input variable.

Figure 14 shows the three simple pattern trees (with prediction accuracy of
93.25%) generated using the same training dataset. In terms of the size of leaf nodes,
the three simple pattern trees have 6 × 3 = 18 leaf nodes in total as each pattern
tree per class has 6 fuzzy terms, while the decision tree has 26. Figure 15 shows the
constructed level5PT tree (with prediction accuracy of 94.38%) for class 0, which

Table 11 Prediction accuracy of fuzzy decision trees, simple pattern trees, and pattern trees using
Glass Identification dataset

Training Testing FDT SimPT PTLevel5 PTLevel9

ds-odd ds-even 55.14% 61.68% 62.61% 62.61%
ds-even ds-odd 57.94% 55.14% 58.87% 60.74%
ds ds 87.75% 71.02% 70.09% 72.89%

Table 12 Prediction accuracy of fuzzy decision trees, simple pattern trees, and pattern trees using
Diabetes dataset

Training Testing FDT SimPT PTLevel5 PTLevel9

ds-odd ds-even 75.26% 72.65% 76.82% 77.60%
ds-even ds-odd 74.48% 72.13% 74.21% 75.26%
ds ds 91.15% 75.52% 75.39% 76.30%

Table 13 Prediction accuracy of fuzzy decision trees, simple pattern trees, and pattern trees using
Wine Recognition dataset

Training Testing FDT SimPT PTLevel5 PTLevel9

ds-odd ds-even 92.13% 93.25% 94.38% 96.62%
ds-even ds-odd 91.01% 97.75% 97.75% 97.75%
ds ds 97.75% 98.31% 97.75% 98.31%

424 Z. Huang et al.

Fig. 13 Decision tree
generated using Wine
Recognition dataset

F5

0color−intensity hue proline

flavanoids

2 2 2 2 2 1 1 1 1 1 1 1 0 0 01 1 0 0 01 0

alcohol

F1 F2 F3 F4 F5F0

F0

has 9 leaf nodes. Its complexity is still acceptable although it is more complex than
fuzzy decision trees or simple pattern trees.

The complexity can also be compared in the form of rule representation. For
example, if only class 0 is considered, the rules extracted from the decision tree,
simple pattern trees, and pattern trees are listed in (19), (20) and (21) respectively.
It can be seen that the simple pattern tree has the simplest form.

(I F f lavanoids = F2 AN D alcohol = F3) O R

(I F f lavanoids = F2 AN D alcohol = F4) O R

(I F f lavanoids = F2 AN D alcohol = F5) O R

(I F f lavanoids = F2 AN D proline = F2) O R

(I F f lavanoids = F2 AN D proline = F3) O R

(I F f lavanoids = F2 AN D proline = F4) O R

(I F f lavanoids = F2 AN D proline = F5) O R

(I F f lavanoids = F5)

T H E N class = 0 (19)

(((((I F f lavanoids = F3 OW A malic-acid = F1) OW A

proline = F3) OW A proline = F4) OW A

proline = F5) W A alcalini ty = F1)

T H E N class = 0 (20)

(((((I F f lavanoids = F3 OW A malic-acid = F1) Luc_O R

proline = F3) OW A

MAX

0

alcalinity

proline

proline

proline

malic−acidflavanoids

WA_0.91
F1

OWA_0.38
F3 F1

OWA_0.99
F3

OWA_0.98

OWA_0.99
F4

F5

2

OD280
hue

malic−acid

color−intensity

color−intensity

flavanoids

F4

OWA_0.92
F0

WA_0.94
F2

F5

MAX

MAX

OWA_0.87
F0 F0

1

malic−acid
ash

alcohol

magnesium

color−intensity ash

WA_0.92
F0

F1

F0

F5
MAX

MAX

F0
MAX

F0

Fig. 14 Simple pattern trees generated using Wine Recognition dataset

Pattern Trees: An Effective Machine Learning Approach 425

F5

proline

flavanoids flavanoids flavanoids flavanoids proline

proline

0

proline

malic−acid

F3
OWA_0.38

F3
Luc_OR

F1

Einstein
OR

OWA_0.9 F4
OWA_0.86

OWA_0.33

F3 F3 F3

OWA_0.99
F4

OWA_0.98

Fig. 15 A pattern tree generated using Wine Recognition dataset for class 0

((f lavanoids = F3 OW A f lavanoids = F4) Einstein_O R

(f lavanoids = F3 OW A proline = F3)))

OW A proline = F4) OW A proline = F5)

T H E N class = 0 (21)

With respect to choosing appropriate methods for real world applications,
PTLevel9 trees are favored if performance is a critical factor. The drawback is that
these trees may compromise the comprehensibility, as the number of leaf nodes
tends to be large. If, however, the comprehensibility is critical for the solution to be
considered, SimPT trees are a good choice.

6 Weighted Pattern Trees

The classification using pattern trees discussed in Sect. 2.3 is based on the assump-
tion that all pattern trees each have the same confidence on predicting a particular
class, though it is not always the case in real world applications. Weighted trees are
introduced to resolve this problem. For each tree, the similarity of such tree to the
output class is served as a degree of confidence, to reflect how confident to use this
tree to predict such a class. For example, if the two trees in Fig. 2 have similarities
of 0.1 and 0.8 respectively, they can be called weighted pattern trees with weights
of 0.1 and 0.8. The prediction using weighted pattern trees is the same as pattern
trees, except that the final truth values are multiplied by the weights of trees. As
an example, let’s revise the classification problem in Sect. 2.3; consider classifying
the fuzzy data A1 = 0.8, A2 = 0.2, B1 = 0, and B2 = 1 over pattern trees (with
weights of 0.1 and 0.8) in Fig. 2, its truth values over pattern trees for class X and
Y change to 0.08 and 0.16 respectively, and Y (rather than X) is therefore chosen as
the output class. This reflects the fact that, if a tree has a low weight, even an input
data has a high firing strength over such pattern tree, the prediction is not confident.

426 Z. Huang et al.

Note that this example is merely used to show how weighted pattern trees work. In
practice, a pattern tree with weight 0.1 may not be trusted to predict a class.

The concept of weighted pattern trees is important. It offers an option to trade off
the complexity and performance of pattern trees. The pattern tree building process
can stop at very compact trees, if it detects that the similarities (weights) of such
trees are already high enough. In addition, it enhances the comprehensibility of
pattern trees. For example consider the construction of the pattern tree for class Y in
Fig. 2, assume that the tree growing from the primitive tree B2 ⇒ Y to B2∧A2 ⇒ Y
leads to the weight increase from 0.6 to 0.8, this gradual change can be interpreted
in a comprehensible way:

I F B = B2 T H E N it i s possible that class = Y, (22)

I F B = B2 AN D A = A2 T H E N it i s very possible that class = Y, (23)

if users pre-define semantic ranges of weights, say less possible: [0, 0.3), possible:
[0.3, 0.7), and very possible: [0.7, 1]. Thus, the graduate change of confidence of
pattern trees can be monitored from the pattern tree induction process. This provides
a very transparent way for fuzzy modeling.

7 Experimental Results using BT Dataset

In this section, different variants of pattern trees, namely simple pattern trees,
weighted simple pattern trees, pattern trees, and weighted pattern trees, are applied
to a sample customer satisfaction dataset from BT. This dataset has a total of 26 input
parameters representing ease of contact, problem understanding, service quality, re-
pair time, and overall event handling. Among the input parameters, 6 are numerical
parameters and the rest 20 are category ones, with the number of possible values
being from 2 up to 17. The output parameter consists of 7 classes reflecting varying
degrees of customer satisfaction.

The BT customer satisfaction dataset has 16698 data points in total. Let ds, ds-
odd and ds-even be the datasets which contains the whole, the odd numbered, and
the even numbered data points respectively. The number of data per class for these
three datasets are shown in Table 14, with ci, i = 0, . . . , 6 standing for class i.
As can be seen, this dataset is not well balanced as the number of data per class
varies significantly. The experiments of (weighted) pattern trees are carried out in
three combinations of training-test datasets, namely, odd-even, even-odd, and ds-ds.
In all experiments, a simple fuzzification method based on three evenly distributed
trapezoidal membership functions for each numerical input parameter is used to
transform the crisp values into fuzzy values. All aggregations as listed in Table 2 are
allowed in pattern trees. The similarity measure as shown in (3) is used.

Pattern Trees: An Effective Machine Learning Approach 427

Table 14 Number of data per class for ds, ds-odd and ds-even datasets

c0 c1 c2 c3 c4 c5 c6

ds 1895 7289 4027 382 1361 853 891
ds-odd 949 3659 1990 197 660 448 446
ds-even 946 3630 2037 185 701 405 445

7.1 Prediction accuracy and overfitting

The prediction accuracy and rule number of the fuzzy decision trees (FDT) with
respect to the minimal number of data per leaf node (used as criteria to terminate
the training), over different combinations of training-test sets are shown in Fig. 16.
The prediction accuracy of pattern trees (PT) and weighted pattern trees (WPT)
with respect to different tree levels, over different combinations of training-test sets
is shown in Fig. 17.

The experiments show that weighted pattern trees and pattern trees perform
roughly the same. In fact, the former slightly outperform the latter. Table 15 shows
the highest prediction accuracy of fuzzy decision trees, (weighted) simple pattern
trees and (weighted) pattern trees over different combinations of training-test sets.
Both weighted and unweighted pattern trees can obtain higher prediction accuracy
than fuzzy decision trees in odd-even and even-odd combinations. However, if con-
sidering ds-ds combination, fuzzy decision trees perform much better. This just re-
flects the overfitting of fuzzy decision trees, since fuzzy decision trees generate large
differences in classification accuracy between the odd-even, even-odd combinations
and ds-ds one. The reason is that decision tree induction considers only a portion of
the whole training dataset in choosing the branches at low levels of trees. The lack of
using the whole training dataset inevitably prevents the method finding generalized
tree structures for all the dataset. In contrast, pattern trees make use of the whole data
in building each level of the tree, which ensures the tree to keep good generality for
classifications. Therefore, even complex pattern trees do not suffer from over-fitting.

0 200 400 600 800 1000 1200
40

50

60

70

80

90

100

 number of data per leaf node

 pr
ed

ict
ion

 ac
cu

rac
y

odd−even
even−odd
ds−ds

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

3000

 number of data per leaf node

 nu
mb

er
of

rul
es

odd−even
even−odd
ds−ds

Fig. 16 Prediction accuracy and rule number of fuzzy decision trees with different number of data
per leaf node

428 Z. Huang et al.

3 4 5 6 7 8 9
40

50

60

70

80

90

100

 number of tree level (simple pattern trees)

 pr
ed

ict
ion

 ac
cu

rac
y

odd−even−PT
odd−even−WPT
even−odd−PT
even−odd−WPT
ds−ds−PT
ds−ds−WPT

3 4 5 6 7 8 9
40

50

60

70

80

90

100

 number of tree level (pattern trees)

 pr
ed

ict
ion

 ac
cu

rac
y

odd−even−PT
odd−even−WPT
even−odd−PT
even−odd−WPT
ds−ds−PT
ds−ds−WPT

Fig. 17 Prediction accuracy of pattern trees and weighted pattern trees with different tree levels

In addition, the experiments show that (weighted) pattern trees tend to converge
to a accuracy rate when the number of tree level becomes large. It has no trend of
overfitting. This property is essential to ensure a stable, compact and effective fuzzy
model for the problem at hand. In fact, (weighted) pattern trees with two or three
level perform very well for all conducted experiments. That means, pattern trees
which consist of maximal 23 = 8 leaf nodes can perform well, in contrast to tens,
or even hundred rules used in fuzzy decision trees. This provides a superb solution
to achieve a highly effective as well as compact fuzzy model.

7.2 Approximate accuracy

Section 7.1 presents the prediction accuracy of trees in a very strict way. That is,
if and only if a data is predicted exactly as its class, this prediction is counted as
a correct one. In other words, there is no distinction between “close” errors and
“gross” errors. In BT customer dataset, this distinction is necessary as it reflects how
far the prediction is away from the actual class. It is much worse if a data of class
0 is mis-predicted to class 5 rather than to class 1. To resolve this problem, three
accuracy estimations, namely accuracy 1, accuracy 2, and accuracy 3 are employed
to estimate prediction accuracy which has no tolerance (the same as the one used
in Sect. 7.1), tolerance of adjacent mis-prediction, and tolerance of mis-prediction

Table 15 Highest prediction accuracy of fuzzy decision tree, pattern trees, and weighted pattern
trees

FDT SimPT PT

no weight weight no weight weight

odd-even 50.62% 51.19% 51.45% 51.89% 51.92%
even-odd 50.47% 51.92% 52.47% 51.93% 52.37%
ds-ds 71.36% 51.82% 52.09% 51.88% 52.18%

Pattern Trees: An Effective Machine Learning Approach 429

within two closest neighbor classes in either direction, respectively. For example
in the BT dataset, the mis-prediction of a class 0 data to class 2 is still counted as
a correct prediction in the estimation of accuracy 3, although it is not counted in
accuracy 1 and accuracy 2.

Table 16 shows the highest prediction accuracy of fuzzy decision trees, (weighted)
simple pattern trees and (weighted) pattern trees over odd-even combination of
training-test sets. Both weighted and unweighted pattern trees can obtain higher
prediction accuracy than fuzzy decision trees in estimation of accuracy 1 and 2. In
estimation of accuracy 3, weighted pattern trees perform the best, and fuzzy decision
trees outperform unweighted pattern trees. Generally, accuracy 2 and 3 are very
consistent with accuracy 1. Pattern trees with a high value of accuracy 1 usually
have high values of accuracy 2 and 3. This table also shows that both fuzzy decision
trees and pattern trees can obtain over 80% prediction accuracy if the closest error
can be tolerated.

7.3 Interpretation of pattern trees

Each pattern tree can be interpreted as a general rule. Considering building level 5
simple pattern trees using odd dataset, 7 simple pattern trees can be obtained, with
each representing one output class. Fig. 18 shows the tree for class 0. The ellipses
are the input parameters and the rectangle is the output class 0. Over each branch, i
and Fi , i = 0, . . ., are category values and fuzzy terms associated with each input
parameter. All aggregators as shown in Table 2 are allowed to be used in pattern
trees. For example, A_AND is algebraic AND, and WA_0.84 is weighted average
with weight vector w = (0.84, 0.16).

Fig. 18 roughly indicates that one example combination yielding highly satisfied
customers are: no call re-routing, fast fault reporting time, high technician compe-
tence, being well-informed through the repair process, and high satisfaction with
company/product in general. Here, we say roughly, as we use different aggregations
such as weighted average (WA), ordered weighted average (OWA), algebraic and
(A_AND) etc. rather than simple AND.

These 7 pattern trees obtains an accuracy of 51.46%. In particular, the confusion
table is shown in Table 17, where S A and S P are number of data for actual and
predicted classes respectively.

Table 16 Highest prediction accuracy of fuzzy decision trees, pattern trees, and weighted pattern
trees over odd-even training-test combination

FDT SimPT PT

no weight weight no weight weight

accuracy 1 50.62% 51.19% 51.45% 51.89% 51.92%
accuracy 2 84.02% 84.08% 84.68% 84.44% 84.82%
accuracy 3 92.13% 91.74% 92.70% 91.85% 92.29%

430 Z. Huang et al.

par20

par25

par6

class 0
1

WA_0.84
2 F0

1

WA_0.97
F0

F0

AND

A_AND

OWA_0.02

par21

par24

par10

Fig. 18 Pattern tree for class 0 using odd dataset

7.4 Limitation

It is a little strange that no prediction is made to c0 for all test data in Table 17. It can
be seen that nearly all data (884 out of 946 in fact) with class 0 are mis-classified to
class 1. A first intuition is to raise the weight of pattern tree for class 0 . However,
this does not work; the raise does not only lead to the data of class 0 to be classified
correctly, but also lead to the majority of data of class 1 to be classified as class
0. Considering that there are 3630 data of class 1 and only 946 data of class 0
in even dataset, the raise of weight for class 0 tree would therefore cause more
mis-classifications. This can be seen in Fig. 19, where the fired values of first 50
data points per class in even dataset over pattern trees constructed from odd dataset
are shown. The real class line indicates the real classes of the data; for example, data
numbered from 0 to 49 have class 0, and those from 50 to 99 have class 1.

The phenomena of no prediction on particular classes also occurs in fuzzy deci-
sion trees. Considering the highest accuracy of 50.62% which fuzzy decision trees
can obtain over odd-even combination, the confusion table in this case is shown in
Table 18, where no data is predicted to c3, c4 or c5.

An interesting experiment is carried out trying to improve the prediction ac-
curacy for class 0 in Table 17. The data of classes 0 and 1 in odd dataset are
selected as a new training dataset, and the data which are of classes 0 and 1 in
even dataset and are classified as class 1 in Table 17 are selected as a new test
dataset. Both fuzzy decision trees and pattern trees are applied to the new training
data and tested over the new test data. Surprisingly, they obtain the same highest
accuracy of 78.76%. Table 19 shows the confusion table, which only has one data

Table 17 Confusion table for pattern tree prediction using odd-even combination

Prediction

c0 c1 c2 c3 c4 c5 c6 S A

c0 0 884 51 0 3 2 6 946
c1 0 3283 309 0 10 15 13 3630
c2 0 1122 751 1 53 72 38 2037

Actual c3 0 59 94 0 6 20 6 185
c4 0 122 395 1 30 104 49 701
c5 0 50 142 0 23 120 70 405
c6 0 35 129 0 37 131 113 445
S P 0 5555 1871 2 162 464 295 8349

Pattern Trees: An Effective Machine Learning Approach 431

50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

 data #

 fir
ed

 va
lue

s
class 0
class 1
class 2
class 3
class 4
class 5
class 6
real class

Fig. 19 Fired values of first 50 data points per class in even dataset over pattern trees constructed
from odd dataset

Table 18 Confusion table for fuzzy decision tree prediction using odd-even combination

Prediction

c0 c1 c2 c3 c4 c5 c6 S A

c0 17 777 151 0 0 0 1 946
c1 33 2980 605 0 0 0 12 3630
c2 9 942 1035 0 0 0 51 2037

Actual c3 0 49 121 0 0 0 15 185
c4 1 84 509 0 0 0 107 701
c5 1 26 226 0 0 0 152 405
c6 0 31 220 0 0 0 194 445
S P 61 4889 2867 0 0 0 532 8349

Table 19 Confusion table for prediction of both fuzzy decision trees and pattern trees using new
training and test datasets

Prediction

c0 c1 S A

c0 0 884 884
Actual c1 1 3282 3283

S P 1 4166 4167

predicted as class 0 (and it is wrong actually). It can be concluded that the data of
class 0 and class 1 can not be separated properly by either fuzzy decision trees or
pattern trees.

8 Conclusions

This paper has proposed a type of tree termed pattern trees which make use of
different aggregations. Like decision trees, pattern trees are an effective machine
learning approach for classification applications. A novel pattern tree induction

432 Z. Huang et al.

method has been proposed. The comparison to other classification methods includ-
ing SBM, WSBM and fuzzy decision trees using UCI datasets shows that pattern
trees can obtain higher accuracy rates in classifications. It also shows that pattern
trees perform more consistently than fuzzy decision trees. They are capable of find-
ing classifiers with good generality, while fuzzy decision trees can easily fall into
the trap of over-fitting.

According to two different configurations, simple pattern trees and pattern trees
have been distinguished. The former not only produce high prediction accuracy,
but also preserve compact tree structures, while the latter can produce even better
accuracy, but as a compromise produce more complex tree structures. Subject to
the particular demands (comprehensibility or performance), simple pattern trees or
pattern trees provide an effective methodology for real world applications.

Weighted pattern trees have been proposed to reflect the nature that different trees
may have different confidences. The experiments on British Telecom (BT) customer
satisfaction dataset show that weighted pattern trees can slightly outperform pattern
trees, and both are slightly better than fuzzy decision trees in terms of prediction
accuracy. Finally, a limitation of pattern trees as revealed via BT dataset analysis is
discussed.

Although the proposed pattern tree induction method shows very promising re-
sults, it does not mean that it cannot be improved. Other searching techniques can
be used to find alternative pattern trees. For instance, Tabu search[2], which is no-
table for the capability of escaping from local optima, can be implemented. In ad-
dition, the underlying relation between decision trees and pattern trees needs more
research work. The conversion between decision trees and pattern trees is worth
investigating. Finally, research on assignment of weights to pattern trees is neces-
sary. The current version simply makes use of similarity measures as weights. More
sophisticated assignment may be more suitable and can therefore lead to higher
accuracy.

Acknowledgments The authors would like to thank Marcus Thint for his helpful discussions on
the work presented here.

References

1. Chen, S. M., Lee, S. H. and Lee, C. H., “A new method for generating fuzzy rules from
numerical data for handling classification problems,” Applied Artificial Intelligence, Vol. 15,
pp. 645–664, 2001.

2. Glover, Fred and Laguna, Manuel, “Tabu search,” Boston : Kluwer Academic Publishers,
1997.

3. Huang, Z. H. and Gedeon, T. D., “Pattern trees,” IEEE International Conference on Fuzzy
Systems, pp. 1784–1791, 2006.

4. Huang, Z. H., Gedeon, T. D., and Nikravesh, M.,“Pattern trees,” submitted to Transaction on
Fuzzy Systems, 2006.

5. Huang, Z. H., Nikravesh, M., Azvine, B., and Gedeon, T. D., “Weighted pattern trees: a case
study with customer satisfaction dataset,” to appear in World Congress of the International
Fuzzy Systems Association (IFSA), 2007.

Pattern Trees: An Effective Machine Learning Approach 433

6. Kóczy, L. T., Vámos, T. and Biró, G., “Fuzzy signatures,” EUROFUSE-SIC, pp. 210–217,
1999.

7. Mendis, B. S. U., Gedeon T. D., and Kóczy, L. T., “Investigation of aggregation in fuzzy
signatures,” 3rd International Conference on Computational Intelligence, Robotics and Au-
tonomous Systems, 2005.

8. Newman, D. J., Hettich, S., Blake, C. L. and Merz, C.J., UCI Repository of machine learning
databases [http://www.ics.uci.edu/ mlearn/MLRepository.html], 1998.

9. Nikravesh, M., “Soft computing for perception-based decision processing and analysis: web-
based BISC-DSS,” Studies in Fuzziness and Soft Computing, Vol. 164, pp. 93–188, Springer
Berlin/Heidelberg, 2005.

10. Quinlan, J. R., “Decision trees and decision making,” IEEE Transactions on Systems, Man,
and Cybernetics, Vol. 20, No. 2, pp. 339–346, 1994.

11. Raju, G. V. S. and Kisner, R. A., “Hierarchical fuzzy control,” International Journal Control,
Vol. 54, No. 5, pp. 1201–1216, 1991.

12. Rasmani, K. A. and Shen, Q., “Weighted linguistic modelling based on fuzzy subsethood
values,” IEEE International Conference on Fuzzy Systems, Vol. 1, pp. 714–719, 2003.

13. Schweizer, B. and Sklar, A., “Associative functions and abstract semigroups,” Publ. Math.
Debrecen, Vol. 10, pp. 69–81, 1963.

14. Wang, L. X. and Mendel, J. M., “Generating fuzzy rules by learning from examples,” IEEE
Transactions on Systems, Man, and Cybernetics, Vol. 22, No. 6, pp. 1414–1427, 1992.

15. Wang, L. X. and Mendel, J. M., “Fuzzy Basis functions, universal approximation, and orthog-
onal least-squares learning,” IEEE Transactions on Neural Networks, Vol. 3, No. 5, pp. 807–
814, 1992.

16. Wong, K. W, Gedeon, T. D. and Kóczy L. T., “Construction of fuzzy signature from data: an
example of SARS pre-clinical diagnosis system,” IEEE International Conference on Fuzzy
Systems, Vol. 3, pp. 1649–1654.

17. Yager R. R., “On ordered weighted averaging aggregation operators in multicritera decison
making,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 18, pp. 183–190, 1988.

18. Yuan, Y. and M. J. Shaw, “Induction of fuzzy decision trees,” Fuzzy Sets and Systems, Vol. 69,
No. 2, pp. 125–139, 1995.

19. Zadeh, L. A., “Fuzzy sets,” Information and Control, Vol. 8, pp. 338–353, 1965.
20. Zadeh, L. A., “A fuzzy-algorithmic approach to the definition of complex or imprecise con-

cepts,” International Journal of Man-Machine Studies, Vol. 8, pp. 249–291, 1976.

